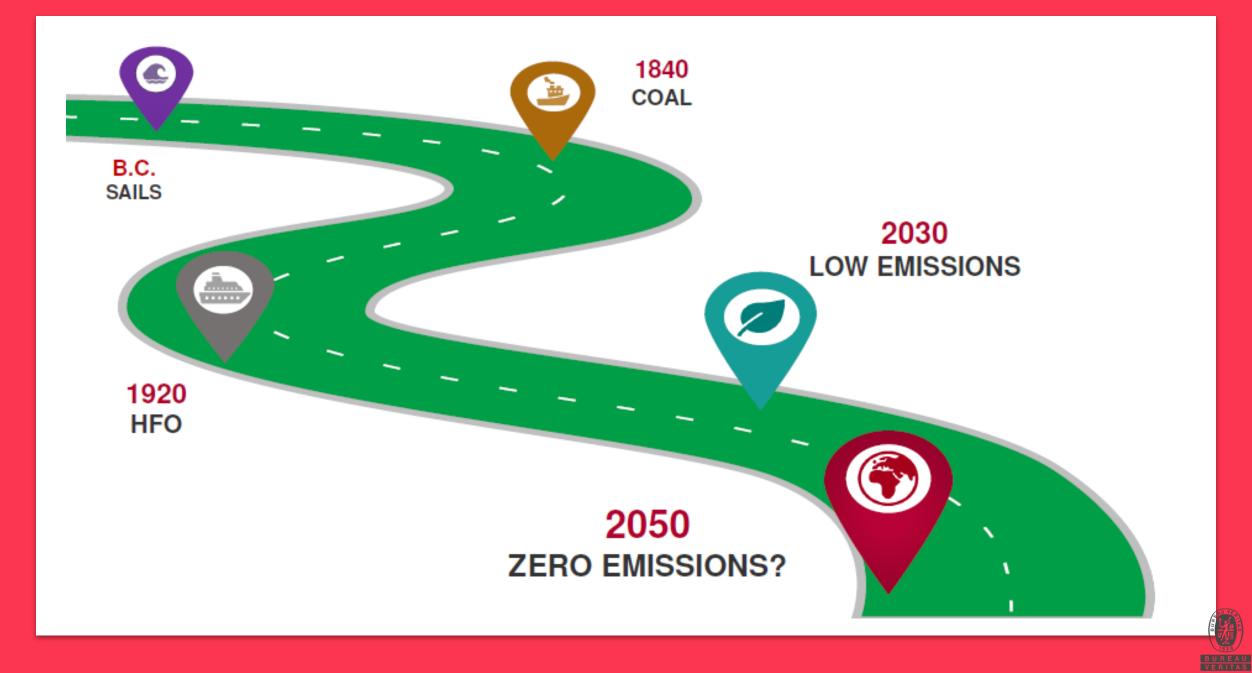
REDUCTION OF GAS EMISSIONS EMITTED BY SHIPS TO COMPLY WITH NEW REGULATIONS.

Redução de emissões de gases emitidos por navios para cumprimento das novas regulamentações

17as JETM 2024.

Lisbon 16 May 2024

Montserrat Espín


montserrat.espin@buerauveritas.com

14-16 MAY

INDEX

HOW THE RULES CAN HELP US

01 REGULATION.

03

NEW FUELS REGULATIONS.

REGULATIONS

REGULATORY FRAMEWORK

MARPOL. EEDI, EEXI, CII, SEEMP Regulations from 2023 (review from 2026)

Market based measures (MBM) under discussion

2030/50 Strategy under review

GHG -50% by 2050 (2008 level)

Intensity GHG -40% by 2030 (2008 level) -70% by 2050 (2008 level)

Fuels LCA. Well-to-Wake under discussion

MEPC80 Jun 2023

EU "FIT FOR 55" PACKAGE

- "FuelEU Maritime" (GHG intensity)
- "Emissions Trading Scheme" (ETS) (carbon trade market)
- Under vote/discussion

Applicable for ships plying in EU zone

Absolute reduction (Fuel EU) :

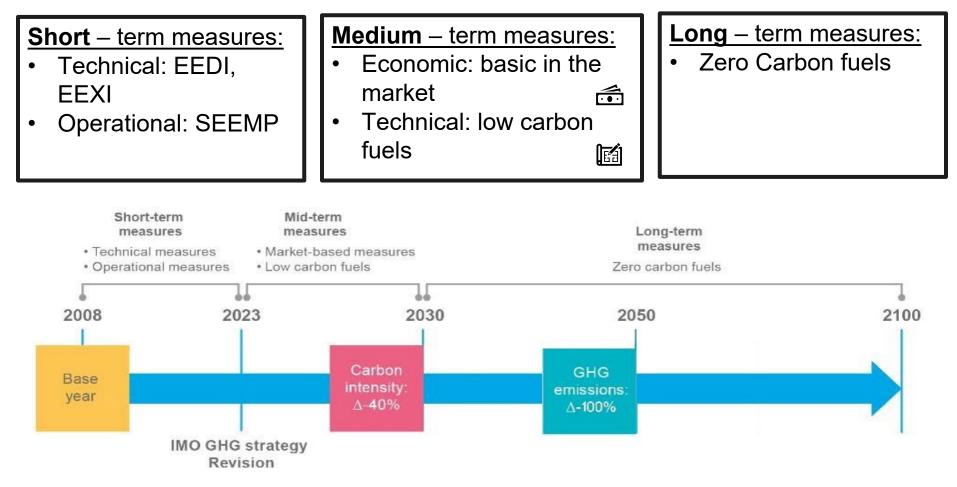
GHG -55% by 2030 (1990 level)

Intensity GHG up to -75% by 2050 (2020 baseline)

Well-to-Wake approach

0000000	

US CLEAN SHIPPING ACT

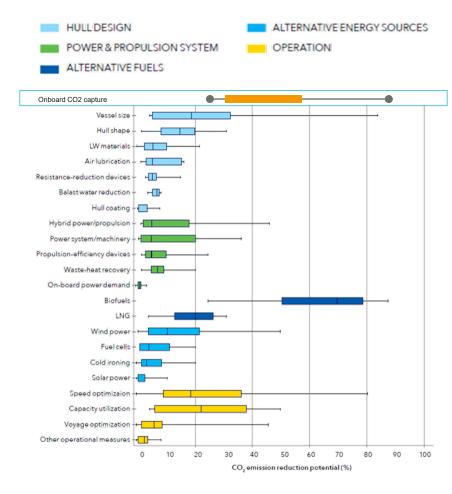

- Part of Clean Air Act
- Under vote / discussion
- Reduction Carbon intensity (vs. 2024) :
- I -20% by 2027 ; -45% by 2030 ; -80% by 2035 ; -100% by 2040

Well-to-wake approach

All GHG gas (CO₂, CH₄, N₂O, F-)

Copyright BV M&O 2023

IMO


UE

	Legislative process (Adoption)	Application	ETS IMO
EU Emisstion Trading System (EU ETS)	Finalized	1 st Jan 2024	extension to meritime Organization The meritime Organization Fit for FuelEU
FuelEU Maritime	Finalized	1 st Jan 2025	55 ETD RED Revision of the Descrive
Alternative Fuel Infrastructure Regulation (AFIR)	Finalized	1 st Jan 2025 EU Green D	eal : "FIT FOR 55"
Renewable Energy	, , , , , , , , , , , , , , , , , , ,	luctions in El	J ei 2030 (compared to 1990))
Directive (RED)	Not Finalized		taxes emissions, promotes energy savings addresses fuel technology, ship fuel demand
Energy Taxation Directive (ETD)	Not Finalized	RED : Fue	el distribution (infrastructure) el supply ration level

HOW THE RULES CAN HELP US

DECARBONIZATION MEASURES

Energy Efficiency

- Hull shapes
- Propulsion Efficiency devices
- Advanced in machinery
- Batteries
- Air Lubrication
- WHR

. . .

~ 10-20%

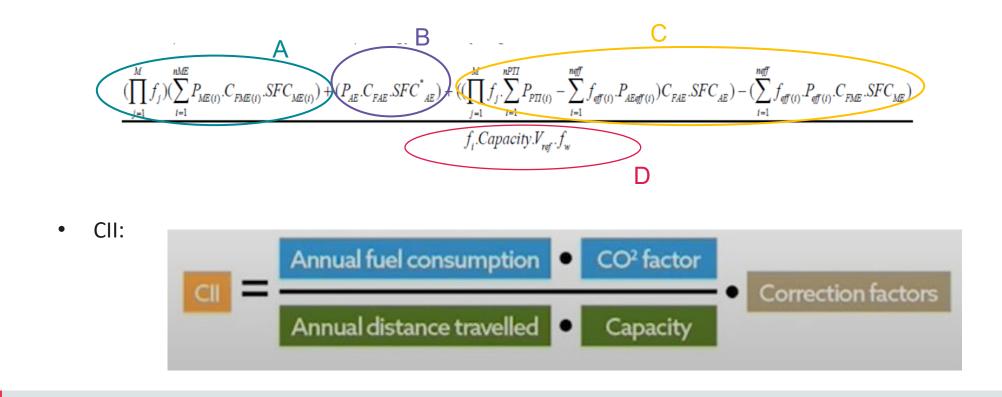
Logistic & Speed

- Speed reduction/slow navigation.
- Capacity
- Trip optimization.
- Alternative routes

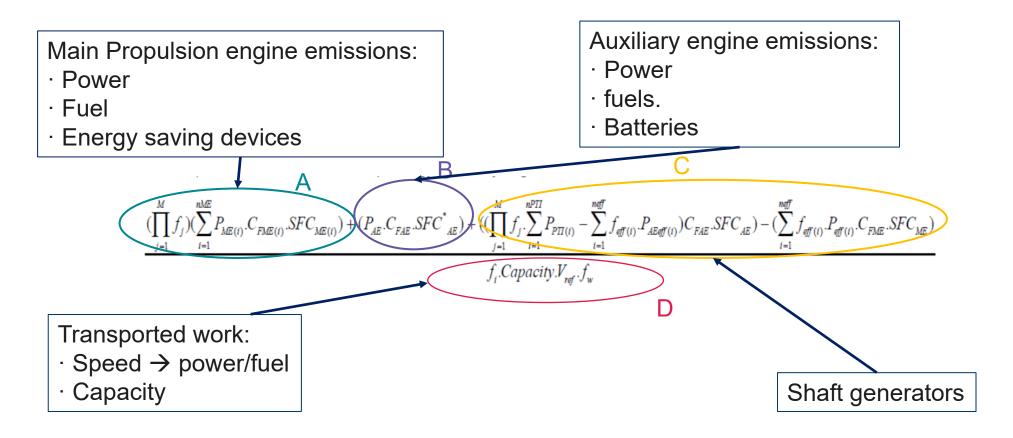
~ up to 80%

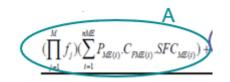
. . .

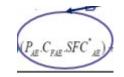
- **Alternative fuels**
- HFO with scrubbers
- LNG
- Bio fuels (gas or liquid)


- H2
- CO₂ Capture.
- Nuclear?

. . .


- Electricity
- Ammonia


Short – term measures: Basic on improving energy efficiency


• EEXI/EEDI:

To reduce emissions, we can:

Reduce emissions from engines (propulsion and auxiliaries), measures:

- Optimization of Hull shapes → decreasing hull resistance (5-17% / 2%-8%). Applicable to ships in service?
- Power limitation → fuel consumption . Be careful with the reduction of speed specific consumption and the reserve power. The most important measure to apply in existing vessels (5%-15% saving).
- Energy saving devices hull and propulsion → easy retrofit. Higher performance propellers, nozzles, hull appendages, air lubrication, paints, heat recovery systems... (saving: 2-20%).
- Hybridization → batteries. Permanent engine operation. Interesting as a retrofit and new construction (saving between 50 to 90%). Important keys: battery weight, location on board, safety matters (fire risk, gas emissions, ...)
- Wind propulsion.
- New fuels.
- CO2 Capture? / Nuclear?

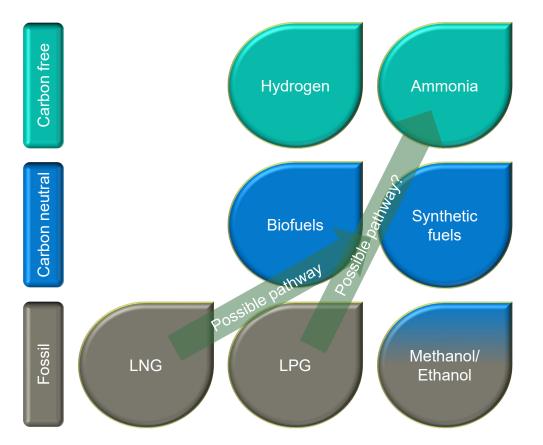
f. Capacity. V ... f.

D

- Focus in exising ships.
- Maintenaince of hull \rightarrow paints, scheduled cleaning, ... (5-25%).
- Trim optimization \rightarrow power.
- Routes optimization, weather conditions, ...

D B NEW FUELS REGULATIONS.

HOW TO REDUCE EMISSIONS ON BOARD?


Alternative fuels, Available?

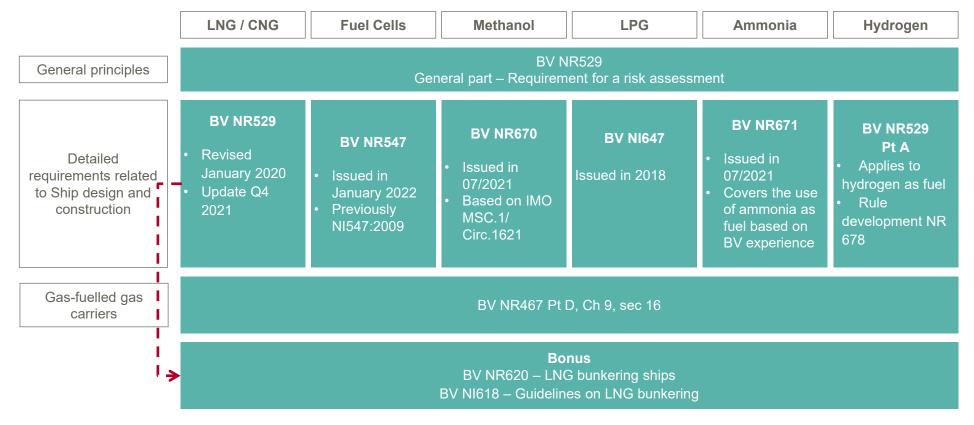
The new fuels which the maritime transport is focusing:

- Bio fuels: to replace the fossil fuels (MDO, MGO, HFO).
- LNG
- Methanol.
- Ammonia
- Hydrogen

Alternative fuels

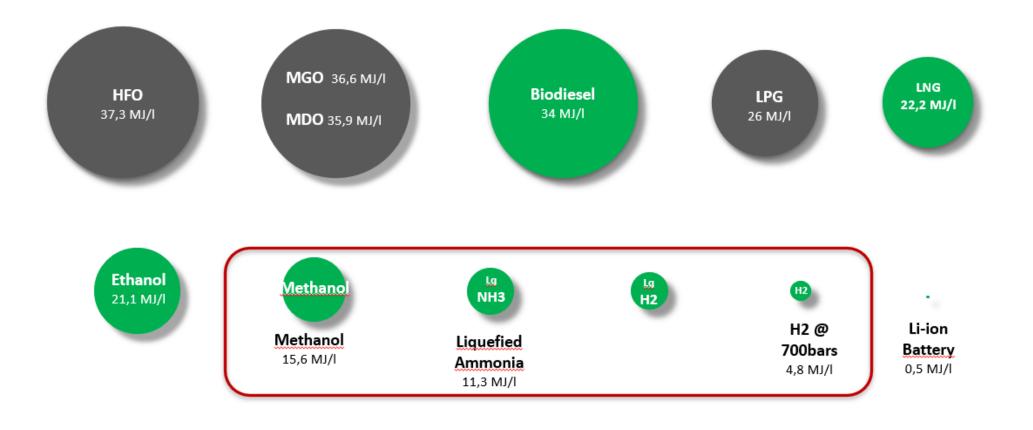
Key considerations

Maturity & availability of technology Specific energy (weight) & density (volume) Safety considerations (flammability, toxicity) Regulatory framework Global availability of fuel (terminal network) Availability of bunkering facilities Sustainability (Environmental, Social and Governance/Corporate Social Responsibility aspects) Economics: CAPEX Economics: OPEX Flexibility for future adaptation

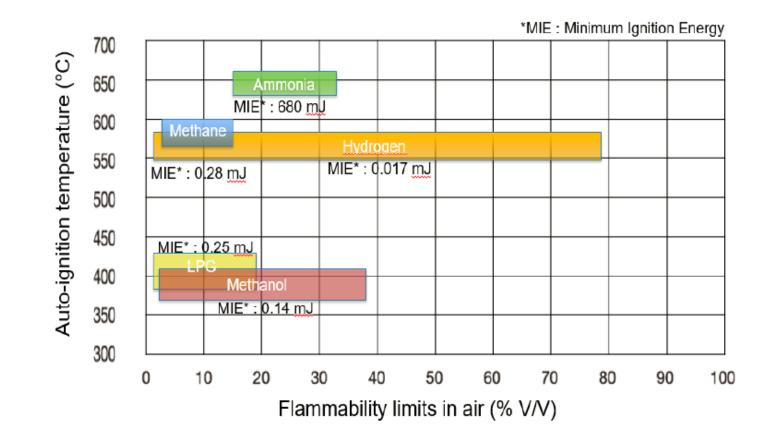

NEW FUELS – DESING RULES

Alternative Fuels: IMO Regulatory Framework

	LNG / CNG	Fuel Cells	Methanol	LPG	Ammonia	Hydrogen	
Functional requirements, goals and principles (Ship design, construction and operation)	IGF Code Part A - Detailed risk analysis - Alternative design approach if no detailed requirements available in IGF Code						
Detailed requirements related to Ship design, construction and operation	IGF Code Parts A-1, B-1, C-1	 MSC.1/Circ.1647 Draft finalized by CCC7 (09/2021) Approved by MSC105 (04/2022) 	MSC.1/Circ.1621 • Interim guidelines for the safety of ships using methyl/ethyl alcohol as fuel • Approved by MSC102 in November 2020	Guideline under development • Work started at CCC6 (2019) • Draft to be finalized at CCC9 (2022) • To be approved by MSC107 (2023) ?	IMO work item under discussion CCC CG is gathering safety information Decision by MSC105 (04/2022) to develop guidelines	initiated Development initiated by the CCC correspondance group dedicated to IGF Code-	
Functional requirements and goals related to training			IGF Cod	le Part D			


NEW FUELS – DESING RULES

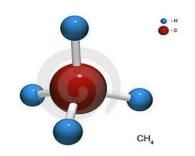
Alternative Fuels: Bureau Veritas Rules


NEW FUELS - CHARACTERISTICS

Alternative Fuels: Volume - energy

NEW FUELS - CHARACTERISTICS

Alternative fuels: Flammability limits/ Ignition

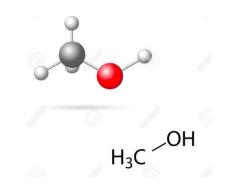

Biofuels

Biofuels:

- Versatility:
 - Apply to all vessels!!, (new and existing).
 - Liquid: bunkering.
 - Full controlled risks
 - Same volume
- No so much modifications \rightarrow Current rules applicable without modifications.

LNG

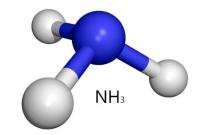
Considered transition fuel.



- Developed regulations \rightarrow there are reliable design guides/rules.
- Extensive experience in LNG use and transportation. No major accidents recorded.
- Challenges: "methane slip" reduction:
 - Engine manufacturers very involved and actively working.
 - Standards are being proposed for the actual measurement of methane slip in engines_
 - Improve the CO₂ emissions (equivalent CO₂).
 - The use of this fuel in the world fleet is expanding.
- It will be possible to use biomethane and E methane (green hydrogen + CO2) → reduction of the emisión in the life cycle.
- No NOx emissions!!! .

Methanol

Methanol will reduce the emissions if it is produced from renewables energies.


- Design rules developed. They are in use \rightarrow they are applicable to vessels
- Advantages:
 - liquid
 - Chemical product widely used in industry process. Known marine transport
 - Infrastructures: the current infrastructures can be adapted with minor modifications.
 - Biodegradable.
 - Available in the marked 2T / 4T engines and retrofitting kits
- Disadvantage:
 - Volume: 2,5 higher.
 - Almost invisible flame \rightarrow detection.
 - Toxicity.

Ammonia

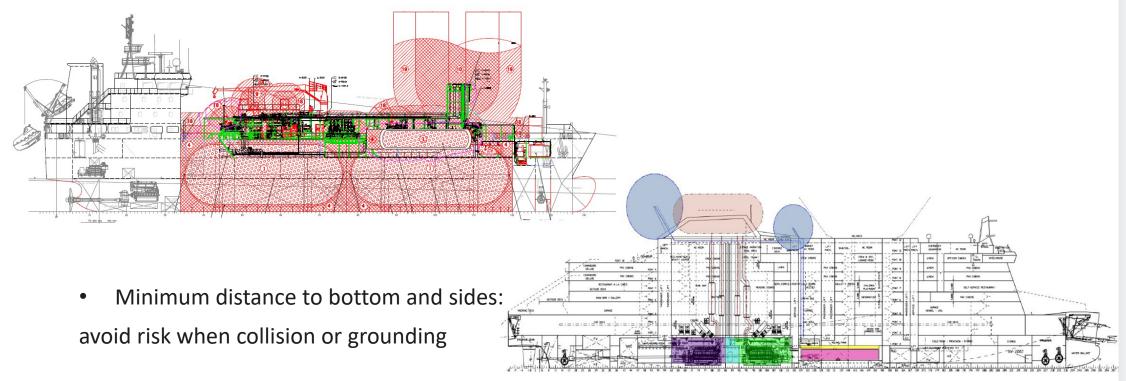
Ammonia will reduce the emissions if produced from renewable energies.

- Rules under development. First ship designs.
- Advantages:
 - Zero carbon, no SOx, but there are NOx emissions.
 - Chemical product widely used in industry process and refrigeration. Known handling and transport on board of vessel and use as refrigerant in ammonia refrigerating plants → fishing vessels.
- Disadvantages:
 - Volume: three times.
 - Fire extinguishing systems.
 - High toxicity \rightarrow Passenger vessels?.
 - There are not engines in the marked. The fuel cells using ammonia are not a mature technology.
 - Low flammability \rightarrow very careful control of the explosion point in the engines..

Hydrogen

Hydrogen will reduce the emissions if produced from renewable energies.

- Rules and design guidelines under development. First ship designs (I+D). No experience.
- Advantages:
 - Zero carbon, no SOx emissions, no NOx.
 - It could be a solution for inland and cabotage navigation (volume)
- Disadvantages:
 - Tanks 5-7 higher volume.
 - High flammability \rightarrow a lot of challenge in safety matters.
 - Invisible flame.



- The technologies are developing. Fuel cells for marine used limited by power (200 kW?) Manufacturer working in it..
- Bunkering.
- Transport.

New Fuels FP<60°C

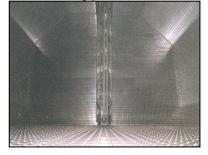
Design guidelines based in the following principles:

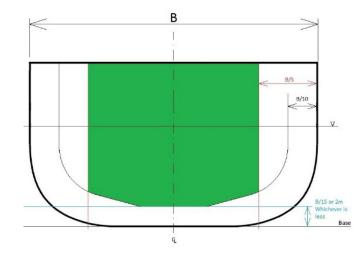
• Tank arrangement: segregation principle.

New Fuels FP<60°C

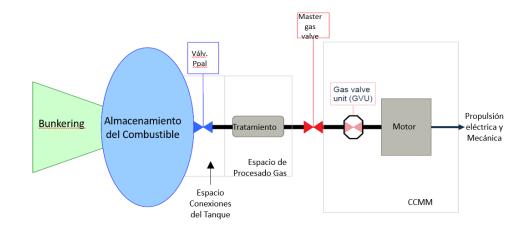
Compatibility of materials principle. Tanks:

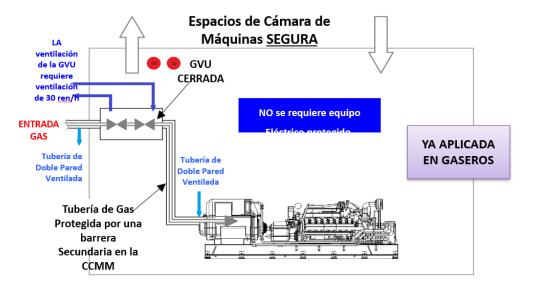
• Tanks types: based on the fuel. Compatibility of materials.


Туре С


Туре А

Турео В


Membrane



New Fuels FP<60°C

Safety principle:

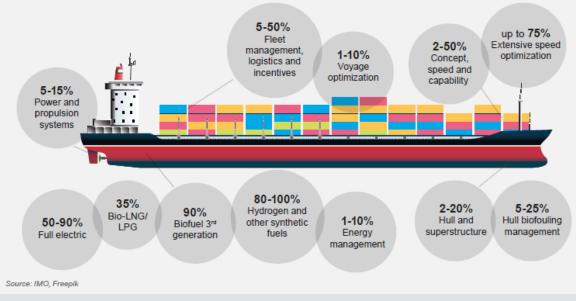
• Piping design (double wall), safety machinery spaces ...:

New Fuels FP<60°C

Safety principle:

- Risk analysis. In new design mandatory.
- Hazardous areas definition \rightarrow depending on the fuel.
- Ventilation system design, Ventilation mast → extended hazardous areas, location, limitations...
- Ex Electrical equipment → de energization. Disconnection of electrical equipment if gas detection.
- Toxicity \rightarrow Zero leakage philosophy.
- Material compatibility.
-
- •

04


CONCLUSIONS / SUMMARY

CONCLUSIONS

I To achieve the goals proposed by IMO / EU: will be needed using several decarbonization measures **mixed several Solutions: technical and operacionals** and inovation.

DESIGN, OPERATIONAL AND ECONOMIC SOLUTIONS

Achieving the goals of the Initial IMO GHG Strategy will require a mix of technical, operational and innovative solutions applicable to ships. Some of them, along with the indication of their approximate GHG reduction potential, are highlighted below.

CONCLUSIONES / SUMMARY

- There are technologies to be able to comply with regulations in the coming years \rightarrow mainly ships in service.
- Interesting to study or valuate several measurements: CAPEX and OPEX studies should be present in the new projects and modification of the existing vessels.
- Final solution: new fuels.
- New fuels mainly characteristics to be considered in the designs:
 - The volume use for storing is higher than fossil fuels.
 - New design Philosophy: focused on the flammability and toxicity.
 - What will the final new fuel be to use? \rightarrow complicate decision.
 - Challenge in the design, transport and bunkering.

SHAPING A BETTER MARITIME WORLD

YOUR CLASSIFICATION PARTNER FOR TODAY AND TOMORROW